MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

PRACTICE PROBLEMS FOR MITERM 1

- **1.** Prove that for all sets A, B
 - (a) $A \cup B = (A B) \cup (A \cap B) \cup (B A).$
 - (b) $(A \cup B) B = A B$.

2. Prove or give a counter-example:

- (a) For every function $f: X \to Y$ and every $B \subseteq Y$, $I_f(B)^c = I_f(B^c)$.
- (b) For every function $f: X \to Y$ and every $A \subseteq X$, $f(A)^c = f(A^c)$.

3. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined as follows: for $x \in \mathbb{R}$,

$$f(x) = \begin{cases} x^2 & \text{if } x \le -1 \\ |x| & \text{if } -1 \le x \le 1 \\ x & x \ge 0 \end{cases}$$

Is f a well-defined function? Justify your answer.

- 4. (a) Let $g : \mathbb{R} \to \mathbb{R}$ be the absolute value function, i.e. g(x) = |x| for each $x \in \mathbb{R}$. What is $I_g(g([-1,0)))$?
 - (b) In general, for an arbitrary function $f : X \to Y$ and $A \subseteq X$, what is the relation between A and $I_f(f(A))$? Prove your answer.
- 5. Recall the definition of linear independence for points (vectors) in \mathbb{R}^n .

Definition. Vectors $\vec{v_1}, \vec{v_2}, \dots, \vec{v_k} \in \mathbb{R}^n$ are called *linearly independent* if

$$\forall a_1, a_2, \dots, a_k \in \mathbb{R} \Big[a_1 \vec{v_1} + a_2 \vec{v_2} + \dots + a_k \vec{v_k} = \vec{0} \implies \big(\forall i \le k, a_i = 0 \big) \Big].$$

Vectors $\vec{v_1}, \vec{v_2}, ..., \vec{v_k} \in \mathbb{R}^n$ are said to be *linearly dependent* if they are not linearly independent.

- (a) Write out explicitly what it means for vectors $\vec{v_1}, \vec{v_2}, ..., \vec{v_k} \in \mathbb{R}^n$ to be linearly dependent. The only negation sign/word in your sentence should be negating equality \neq .
- (b) Are the vectors (1,1) and (1,0) linearly independent? Prove your answer.
- (c) Are the vectors (1,0,0), (0,1,1) and (1,1,1) linearly independent? Prove your answer.
- 6. Consider the sequence $(x_n)_{n \in \mathbb{N}}$, where $x_n = \frac{(-1)^n}{n^2}$. Determine whether the following are true or false, and prove your answer in either case.
 - (a) $\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n \ge N |x_n| < \varepsilon$.
 - (b) $\exists N \in \mathbb{N} \ \forall n \ge N \ \forall \varepsilon > 0 \ |x_n| < \varepsilon$.

- 7. Do the induction/strong induction problems in HW5. Also, review the induction problems in HW4.
- 8. In general, it would really help to review HW1–HW4.