MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

PRACTICE PROBLEMS FOR MITERM 1

1. Prove that for all sets A, B
(a) $A \cup B=(A-B) \cup(A \cap B) \cup(B-A)$.
(b) $(A \cup B)-B=A-B$.
2. Prove or give a counter-example:
(a) For every function $f: X \rightarrow Y$ and every $B \subseteq Y, I_{f}(B)^{c}=I_{f}\left(B^{c}\right)$.
(b) For every function $f: X \rightarrow Y$ and every $A \subseteq X, f(A)^{c}=f\left(A^{c}\right)$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined as follows: for $x \in \mathbb{R}$,

$$
f(x)= \begin{cases}x^{2} & \text { if } x \leq-1 \\ |x| & \text { if }-1 \leq x \leq 1 \\ x & x \geq 0\end{cases}
$$

Is f a well-defined function? Justify your answer.
4. (a) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the absolute value function, i.e. $g(x)=|x|$ for each $x \in \mathbb{R}$. What is $I_{g}(g([-1,0))) ?$
(b) In general, for an arbitrary function $f: X \rightarrow Y$ and $A \subseteq X$, what is the relation between A and $I_{f}(f(A))$? Prove your answer.
5. Recall the definition of linear independence for points (vectors) in \mathbb{R}^{n}.

Definition. Vectors $\vec{v}_{1}, \overrightarrow{v_{2}} \ldots, \overrightarrow{v_{k}} \in \mathbb{R}^{n}$ are called linearly independent if

$$
\forall a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{R}\left[a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\ldots+a_{k} \overrightarrow{v_{k}}=\overrightarrow{0} \Longrightarrow\left(\forall i \leq k, a_{i}=0\right)\right]
$$

Vectors $\vec{v}_{1}, \vec{v}_{2} \ldots, \vec{v}_{k} \in \mathbb{R}^{n}$ are said to be linearly dependent if they are not linearly independent.
(a) Write out explicitly what it means for vectors $\vec{v}_{1}, \overrightarrow{v_{2}} \ldots, \vec{v}_{k} \in \mathbb{R}^{n}$ to be linearly dependent. The only negation sign/word in your sentence should be negating equality \neq.
(b) Are the vectors $(1,1)$ and $(1,0)$ linearly independent? Prove your answer.
(c) Are the vectors $(1,0,0),(0,1,1)$ and $(1,1,1)$ linearly independent? Prove your answer.
6. Consider the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$, where $x_{n}=\frac{(-1)^{n}}{n^{2}}$. Determine whether the following are true or false, and prove your answer in either case.
(a) $\forall \varepsilon>0 \exists N \in \mathbb{N} \forall n \geq N\left|x_{n}\right|<\varepsilon$.
(b) $\exists N \in \mathbb{N} \forall n \geq N \forall \varepsilon>0\left|x_{n}\right|<\varepsilon$.
7. Do the induction/strong induction problems in HW5. Also, review the induction problems in HW4.
8. In general, it would really help to review HW1-HW4.

